3.761 \(\int \frac{x}{(a+b x^2)^2 \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=87 \[ \frac{d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 \sqrt{b} (b c-a d)^{3/2}}-\frac{\sqrt{c+d x^2}}{2 \left (a+b x^2\right ) (b c-a d)} \]

[Out]

-Sqrt[c + d*x^2]/(2*(b*c - a*d)*(a + b*x^2)) + (d*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(2*Sqrt[
b]*(b*c - a*d)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0678864, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {444, 51, 63, 208} \[ \frac{d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 \sqrt{b} (b c-a d)^{3/2}}-\frac{\sqrt{c+d x^2}}{2 \left (a+b x^2\right ) (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[x/((a + b*x^2)^2*Sqrt[c + d*x^2]),x]

[Out]

-Sqrt[c + d*x^2]/(2*(b*c - a*d)*(a + b*x^2)) + (d*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(2*Sqrt[
b]*(b*c - a*d)^(3/2))

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x}{\left (a+b x^2\right )^2 \sqrt{c+d x^2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{(a+b x)^2 \sqrt{c+d x}} \, dx,x,x^2\right )\\ &=-\frac{\sqrt{c+d x^2}}{2 (b c-a d) \left (a+b x^2\right )}-\frac{d \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{4 (b c-a d)}\\ &=-\frac{\sqrt{c+d x^2}}{2 (b c-a d) \left (a+b x^2\right )}-\frac{\operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{2 (b c-a d)}\\ &=-\frac{\sqrt{c+d x^2}}{2 (b c-a d) \left (a+b x^2\right )}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{2 \sqrt{b} (b c-a d)^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0881002, size = 85, normalized size = 0.98 \[ \frac{1}{2} \left (\frac{\sqrt{c+d x^2}}{\left (a+b x^2\right ) (a d-b c)}+\frac{d \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{a d-b c}}\right )}{\sqrt{b} (a d-b c)^{3/2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x/((a + b*x^2)^2*Sqrt[c + d*x^2]),x]

[Out]

(Sqrt[c + d*x^2]/((-(b*c) + a*d)*(a + b*x^2)) + (d*ArcTan[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[-(b*c) + a*d]])/(Sqrt
[b]*(-(b*c) + a*d)^(3/2)))/2

________________________________________________________________________________________

Maple [B]  time = 0.009, size = 513, normalized size = 5.9 \begin{align*} -{\frac{1}{4\,ab \left ( ad-bc \right ) }\sqrt{-ab}\sqrt{ \left ( x-{\frac{1}{b}\sqrt{-ab}} \right ) ^{2}d+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \left ( x-{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}}-{\frac{d}{4\, \left ( ad-bc \right ) b}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x-{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}}+{\frac{1}{4\,ab \left ( ad-bc \right ) }\sqrt{-ab}\sqrt{ \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ) ^{2}d-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}}-{\frac{d}{4\, \left ( ad-bc \right ) b}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^2+a)^2/(d*x^2+c)^(1/2),x)

[Out]

-1/4*(-a*b)^(1/2)/a/b/(a*d-b*c)/(x-1/b*(-a*b)^(1/2))*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b
)^(1/2))-(a*d-b*c)/b)^(1/2)-1/4/b*d/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/
b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-
b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))+1/4*(-a*b)^(1/2)/a/b/(a*d-b*c)/(x+1/b*(-a*b)^(1/2))*((x+1/b*(-a*b)^(1/2))
^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)-1/4/b*d/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*
(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b
)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.04122, size = 849, normalized size = 9.76 \begin{align*} \left [-\frac{{\left (b d x^{2} + a d\right )} \sqrt{b^{2} c - a b d} \log \left (\frac{b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \,{\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} - 4 \,{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{b^{2} c - a b d} \sqrt{d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \,{\left (b^{2} c - a b d\right )} \sqrt{d x^{2} + c}}{8 \,{\left (a b^{3} c^{2} - 2 \, a^{2} b^{2} c d + a^{3} b d^{2} +{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2}\right )} x^{2}\right )}}, \frac{{\left (b d x^{2} + a d\right )} \sqrt{-b^{2} c + a b d} \arctan \left (-\frac{{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{-b^{2} c + a b d} \sqrt{d x^{2} + c}}{2 \,{\left (b^{2} c^{2} - a b c d +{\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )}}\right ) - 2 \,{\left (b^{2} c - a b d\right )} \sqrt{d x^{2} + c}}{4 \,{\left (a b^{3} c^{2} - 2 \, a^{2} b^{2} c d + a^{3} b d^{2} +{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2}\right )} x^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/8*((b*d*x^2 + a*d)*sqrt(b^2*c - a*b*d)*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d -
 3*a*b*d^2)*x^2 - 4*(b*d*x^2 + 2*b*c - a*d)*sqrt(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2))
+ 4*(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(a*b^3*c^2 - 2*a^2*b^2*c*d + a^3*b*d^2 + (b^4*c^2 - 2*a*b^3*c*d + a^2*b^2
*d^2)*x^2), 1/4*((b*d*x^2 + a*d)*sqrt(-b^2*c + a*b*d)*arctan(-1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(-b^2*c + a*b*d)
*sqrt(d*x^2 + c)/(b^2*c^2 - a*b*c*d + (b^2*c*d - a*b*d^2)*x^2)) - 2*(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(a*b^3*c^
2 - 2*a^2*b^2*c*d + a^3*b*d^2 + (b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2)*x^2)]

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**2+a)**2/(d*x**2+c)**(1/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [A]  time = 1.12665, size = 124, normalized size = 1.43 \begin{align*} -\frac{1}{2} \, d{\left (\frac{\arctan \left (\frac{\sqrt{d x^{2} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d}{\left (b c - a d\right )}} + \frac{\sqrt{d x^{2} + c}}{{\left ({\left (d x^{2} + c\right )} b - b c + a d\right )}{\left (b c - a d\right )}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-1/2*d*(arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*(b*c - a*d)) + sqrt(d*x^2 + c)/((
(d*x^2 + c)*b - b*c + a*d)*(b*c - a*d)))